8. References
1. Ko C Y JY, Chen CS; Chen CC. The association between Internet addiction and psychiatric disorder: A review of the literature. European Psychiatry. 2012; 27(1):1–8. https://doi.org/10.1016/j.eurpsy.2010.04.011 PMID: 22153731
2. Association AP. Diagnostic and statistical manual of mental disorders: DSM-5. 5 ed. Washington, D. C.: American Psychiatric Publishing; 2013.
3. Wang Y, Yin Y, Sun YW, Zhou Y, Chen X, Ding WN, et al. Decreased prefrontal lobe interhemispheric functional connectivity in adolescents with internet gaming disorder: a primary study using resting-state FMRI. PLoS One. 2015; 10(3):e0118733. https://doi.org/10.1371/journal.pone.0118733 PMID: 25738502
4. Young KS. Internet addiction: the emergence of a new clinical disorder. Cyberpsychol Behav. 1998; 1:237–44.
5. Griffiths M. A ‘components’ model of addiction within a biopsychosocial framework. Journal of Substance Use. 2005; 10(4):191–7.
6. Beard KW. Internet addiction: a review of current assessment techniques and potential assessment questions. Cyberpsychol Behav. 2005; 8(1):7–14. https://doi.org/10.1089/cpb.2005.8.7 PMID: 15738688
7. Stavropoulos V, Kuss DJ, Griffiths MD, Wilson P, Motti-Stefanidi F. MMORPG gaming and hostility predict Internet Addiction symptoms in adolescents: An empirical multilevel longitudinal study. Addict Behav. 2017; 64:294–300. https://doi.org/10.1016/j.addbeh.2015.09.001 PMID: 26410795
8. Stevens MW, Dorstyn D, Delfabbro PH, King DL. Global prevalence of gaming disorder: A systematic review and meta-analysis. Aust N Z J Psychiatry. 2021; 55(6):553–68. https://doi.org/10.1177/ 0004867420962851 PMID: 33028074
9. Gao YX, Wang JY, Dong GH. The prevalence and possible risk factors of internet gaming disorder among adolescents and young adults: Systematic reviews and meta-analyses. J Psychiatr Res. 2022; 154:35–43. https://doi.org/10.1016/j.jpsychires.2022.06.049 PMID: 35926424
10. Stats IW. World Internet Users Statistics and World Population Stats 2013 [http://www. internetworldstats.com/stats.htm.
11. Rideout VJR M. B. The common sense census: media use by tweens and teens. San Francisco, CA: Common Sense Media; 2019.
12. Meherali S, Punjani N, Louie-Poon S, Abdul Rahim K, Das JK, Salam RA, et al. Mental Health of Children and Adolescents Amidst COVID-19 and Past Pandemics: A Rapid Systematic Review. Int J Environ Res Public Health. 2021; 18(7). https://doi.org/10.3390/ijerph18073432 PMID: 33810225
13. Stevens C, Zhang E, Cherkerzian S, Chen JA, Liu CH. Problematic internet use/computer gaming among US college students: Prevalence and correlates with mental health symptoms. Depress Anxiety. 2020; 37(11):1127–36. https://doi.org/10.1002/da.23094 PMID: 32939888
14. Dumont M P M.A. Resilience in Adolescents: Protective Role of Social Support, Coping Strategies, Self-Esteem, and Social Activities on Experience of Stress and Depression. Journal of Youth and Adolescence. 1999; 28:343–63.
15. Costello EJ, Mustillo S, Erkanli A, Keeler G, Angold A. Prevalence and development of psychiatric disorders in childhood and adolescence. Arch Gen Psychiatry. 2003; 60(8):837–44. https://doi.org/10.1001/ archpsyc.60.8.837 PMID: 12912767
16. Gerber AJ, Peterson BS, Giedd JN, Lalonde FM, Celano MJ, White SL, et al. Anatomical brain magnetic resonance imaging of typically developing children and adolescents. J Am Acad Child Adolesc Psychiatry. 2009; 48(5):465–70. https://doi.org/10.1097/CHI.0b013e31819f2715 PMID: 19395901
17. Doremus-Fitzwater TL, Varlinskaya EI, Spear LP. Motivational systems in adolescence: possible implications for age differences in substance abuse and other risk-taking behaviors. Brain Cogn. 2010; 72(1):114–23. https://doi.org/10.1016/j.bandc.2009.08.008 PMID: 19762139
18. Babaeeghazvini P, Rueda-Delgado LM, Gooijers J, Swinnen SP, Daffertshofer A. Brain Structural and Functional Connectivity: A Review of Combined Works of Diffusion Magnetic Resonance Imaging and Electro-Encephalography. Front Hum Neurosci. 2021; 15:721206. https://doi.org/10.3389/fnhum.2021. 721206 PMID: 34690718
19. Hong SB, Zalesky A, Cocchi L, Fornito A, Choi EJ, Kim HH, et al. Decreased functional brain connectivity in adolescents with internet addiction. PLoS One. 2013; 8(2):e57831. https://doi.org/10.1371/journal. pone.0057831 PMID: 23451272
20. Lee J, Lee D, Namkoong K, Jung YC. Aberrant posterior superior temporal sulcus functional connectivity and executive dysfunction in adolescents with internet gaming disorder. J Behav Addict. 2020; 9(3):589–97. https://doi.org/10.1556/2006.2020.00060 PMID: 32918802
21. Xing L, Yuan K, Bi Y, Yin J, Cai C, Feng D, et al. Reduced fiber integrity and cognitive control in adolescents with internet gaming disorder. Brain Res. 2014; 1586:109–17.
22. Ding WN, Sun JH, Sun YW, Zhou Y, Li L, Xu JR, et al. Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction. PLoS One. 2013; 8(3):e59902. https://doi. org/10.1371/journal.pone.0059902 PMID: 23555827
23. Hong SB, Harrison BJ, Dandash O, Choi EJ, Kim SC, Kim HH, et al. A selective involvement of putamen functional connectivity in youth with internet gaming disorder. Brain Res. 2015; 1602:85–95. https://doi. org/10.1016/j.brainres.2014.12.042 PMID: 25553620
24. Wang L, Shen H, Lei Y, Zeng LL, Cao F, Su L, et al. Altered default mode, fronto-parietal and salience networks in adolescents with Internet addiction. Addict Behav. 2017; 70:1–6. https://doi.org/10.1016/j. addbeh.2017.01.021 PMID: 28160660
25. Li B, Friston KJ, Liu J, Liu Y, Zhang G, Cao F, et al. Impaired frontal-basal ganglia connectivity in adolescents with internet addiction. Sci Rep. 2014; 4:5027. https://doi.org/10.1038/srep05027 PMID: 24848380
26. Chen J, Li X, Zhang Q, Zhou Y, Wang R, Tian C, et al. Impulsivity and Response Inhibition Related Brain Networks in Adolescents With Internet Gaming Disorder: A Preliminary Study Utilizing Resting-State fMRI. Front Psychiatry. 2020; 11:618319. https://doi.org/10.3389/fpsyt.2020.618319 PMID: 33519558
27. Wee CY, Zhao Z, Yap PT, Wu G, Shi F, Price T, et al. Disrupted brain functional network in internet addiction disorder: a resting-state functional magnetic resonance imaging study. PLoS One. 2014; 9(9): e107306. https://doi.org/10.1371/journal.pone.0107306 PMID: 25226035
28. Li W, Li Y, Yang W, Zhang Q, Wei D, Li W, et al. Brain structures and functional connectivity associated with individual differences in Internet tendency in healthy young adults. Neuropsychologia. 2015; 70:134–44. https://doi.org/10.1016/j.neuropsychologia.2015.02.019 PMID: 25698637
29. Jin C, Zhang T, Cai C, Bi Y, Li Y, Yu D, et al. Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder. Brain Imaging Behav. 2016; 10(3):719–29. https://doi.org/10.1007/s11682-015-9439-8 PMID: 26311395
30. Siste K, Pandelaki J, Miyata J, Oishi N, Tsurumi K, Fujiwara H, et al. Altered Resting-State Network in Adolescents with Problematic Internet Use. J Clin Med. 2022; 11(19). https://doi.org/10.3390/jcm11195838 PMID: 36233704
31. Bae S, Hong JS, Kim SM, Han DH. Bupropion Shows Different Effects on Brain Functional Connectivity in Patients With Internet-Based Gambling Disorder and Internet Gaming Disorder. Front Psychiatry. 2018; 9:130. https://doi.org/10.3389/fpsyt.2018.00130 PMID: 29692743
32. McCoy AN, Crowley JC, Haghighian G, Dean HL, Platt ML. Saccade reward signals in posterior cingulate cortex. Neuron. 2003; 40(5):1031–40. https://doi.org/10.1016/s0896-6273(03)00719-0 PMID:14659101
33. Lin F, Zhou Y, Du Y, Zhao Z, Qin L, Xu J, et al. Aberrant corticostriatal functional circuits in adolescents with Internet addiction disorder. Front Hum Neurosci. 2015; 9:356. https://doi.org/10.3389/fnhum.2015.00356 PMID: 26136677
34. Haber SN. Corticostriatal circuitry. Dialogues Clin Neurosci. 2016; 18(1):7–21. https://doi.org/10.31887/DCNS.2016.18.1/shaber PMID: 27069376
35. Zhai T, Shao Y, Chen G, Ye E, Ma L, Wang L, et al. Nature of functional links in valuation networks differentiates impulsive behaviors between abstinent heroin-dependent subjects and nondrug-using subjects. Neuroimage. 2015; 115:76–84. https://doi.org/10.1016/j.neuroimage.2015.04.060 PMID:25944613
36. Li CS, Sinha R. Inhibitory control and emotional stress regulation: neuroimaging evidence for frontal-limbic dysfunction in psycho-stimulant addiction. Neurosci Biobehav Rev. 2008; 32(3):581–97. https://doi.org/10.1016/j.neubiorev.2007.10.003 PMID: 18164058
37. Tremblay L. The Ventral Striatum. Handbook of Reward and Decision Making: Academic Press; 2009.
38. Liang X H Y.; Salmeron B.J.; Gu H.; Stein E.A.; Yang Y.H. Interactions between the salience and default-mode networks are disrupted in cocaine addiction. The Journal of Neuroscience. 2015;35:8081–90. https://doi.org/10.1523/JNEUROSCI.3188-14.2015 PMID: 26019326
39. Zhang JT, Yao YW, Li CS, Zang YF, Shen ZJ, Liu L, et al. Altered resting-state functional connectivity of the insula in young adults with Internet gaming disorder. Addict Biol. 2016; 21(3):743–51. https://doi.org/10.1111/adb.12247 PMID: 25899520
40. Braver TS, Barch DM, Gray JR, Molfese DL, Snyder A. Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb Cortex. 2001; 11(9):825–36. https://doi.org/10.1093/cercor/11.9.825 PMID: 11532888
41. Ma N, Liu Y, Fu XM, Li N, Wang CX, Zhang H, et al. Abnormal brain default-mode network functional connectivity in drug addicts. PLoS One. 2011; 6(1):e16560. https://doi.org/10.1371/journal.pone.0016560 PMID: 21298074
42. Olson IR, Berryhill M. Some surprising findings on the involvement of the parietal lobe in human memory. Neurobiol Learn Mem. 2009; 91(2):155–65. https://doi.org/10.1016/j.nlm.2008.09.006 PMID:18848635
43. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F, Baler R. Addiction: decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain’s control circuit. Bioessays. 2010; 32(9):748–55. https://doi.org/10.1002/bies.201000042 PMID: 20730946
44. Meng Y, Deng W, Wang H, Guo W, Li T. The prefrontal dysfunction in individuals with Internet gaming disorder: a meta-analysis of functional magnetic resonance imaging studies. Addict Biol. 2015; 20(4):799–808. https://doi.org/10.1111/adb.12154 PMID: 24889021
45. Chen S, Li H, Wang L, Du X, Dong GH. A preliminary study of disrupted functional network in individuals with Internet gaming disorder: Evidence from the comparison with recreational game users. Addict Behav. 2020; 102:106202. https://doi.org/10.1016/j.addbeh.2019.106202 PMID:31801105
46. Ma SS, Worhunsky PD, Xu JS, Yip SW, Zhou N, Zhang JT, et al. Alterations in functional networks during cue-reactivity in Internet gaming disorder. J Behav Addict. 2019; 8(2):277–87. https://doi.org/10.1556/2006.8.2019.25 PMID: 31146550
47. Weinstein AM. An Update Overview on Brain Imaging Studies of Internet Gaming Disorder. Front Psychiatry. 2017; 8:185. https://doi.org/10.3389/fpsyt.2017.00185 PMID: 29033857
48. Yuan K, Qin W, Wang G, Zeng F, Zhao L, Yang X, et al. Microstructure abnormalities in adolescents with internet addiction disorder. PLoS One. 2011; 6(6):e20708. https://doi.org/10.1371/journal.pone.0020708 PMID: 21677775
49. Kelly C, Zuo XN, Gotimer K, Cox CL, Lynch L, Brock D, et al. Reduced interhemispheric resting state functional connectivity in cocaine addiction. Biol Psychiatry. 2011; 69(7):684–92. https://doi.org/10.1016/j.biopsych.2010.11.022 PMID: 21251646
50. Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, et al. Evidence for striatal dopamine release during a video game. Nature. 1998; 393(6682):266–8. https://doi.org/10.1038/30498PMID: 9607763
51. Drgonova J, Walther D, Hartstein GL, Bukhari MO, Baumann MH, Katz J, et al. Cadherin 13: human cis-regulation and selectively-altered addiction phenotypes and cerebral cortical dopamine in knockout mice. Mol Med. 2016; 22:537–47. https://doi.org/10.2119/molmed.2015.00170 PMID: 27579475
52. Brand M, Wegmann E, Stark R, Muller A, Wolfling K, Robbins TW, et al. The Interaction of PersonAffect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neurosci Biobehav Rev. 2019; 104:1–10. https://doi.org/10.1016/j.neubiorev.2019.06.032 PMID:31247240
53. Bonnelle V, Ham TE, Leech R, Kinnunen KM, Mehta MA, Greenwood RJ, et al. Salience network integrity predicts default mode network function after traumatic brain injury. Proc Natl Acad Sci U S A. 2012;109(12):4690–5. https://doi.org/10.1073/pnas.1113455109 PMID: 22393019
54. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004; 7(2):189–95. https://doi.org/10.1038/nn1176 PMID: 14730305
55. Sutherland MT, Carroll AJ, Salmeron BJ, Ross TJ, Hong LE, Stein EA. Down-regulation of amygdala and insula functional circuits by varenicline and nicotine in abstinent cigarette smokers. Biol Psychiatry.2013; 74(7):538–46. https://doi.org/10.1016/j.biopsych.2013.01.035 PMID: 23506999
56. Yan H, Li Q, Yu K, Zhao G. Large-scale network dysfunction in youths with Internet gaming disorder: a meta-analysis of resting-state functional connectivity studies. Prog Neuropsychopharmacol Biol Psychiatry. 2021; 109:110242. https://doi.org/10.1016/j.pnpbp.2021.110242 PMID: 33434637
57. Bhana A. Middle childhood and pre-adolescence. Promoting mental health in scarce-resource contexts: emerging evidence and practice. Cape Town: HSRC Press; 2010. p. 124–42.
58. Nelson EE, Leibenluft E, McClure EB, Pine DS. The social re-orientation of adolescence: a neuroscience perspective on the process and its relation to psychopathology. Psychol Med. 2005;35(2):163–74. https://doi.org/10.1017/s0033291704003915 PMID: 15841674
59. Blakemore SJ, Burnett S, Dahl RE. The role of puberty in the developing adolescent brain. Hum Brain Mapp. 2010; 31(6):926–33. https://doi.org/10.1002/hbm.21052 PMID: 20496383
60. Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, et al. Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol. 2009; 5(5):e1000381. https://doi.org/10.1371/journal.pcbi.1000381 PMID: 19412534
61. Blakemore SJ, Choudhury S. Development of the adolescent brain: implications for executive function and social cognition. J Child Psychol Psychiatry. 2006; 47(3–4):296–312. https://doi.org/10.1111/j.1469-7610.2006.01611.x PMID: 16492261
62. Stevens MC. The contributions of resting state and task-based functional connectivity studies to our understanding of adolescent brain network maturation. Neurosci Biobehav Rev. 2016; 70:13–32. https://doi.org/10.1016/j.neubiorev.2016.07.027 PMID: 27502750
63. Choi EJ, Taylor MJ, Vandewouw MM, Hong SB, Kim CD, Yi SH. Attachment security and striatal functional connectivity in typically developing children. Dev Cogn Neurosci. 2021; 48:100914. https://doi.org/10.1016/j.dcn.2021.100914 PMID: 33517105
64. Rakesh D, Seguin C, Zalesky A, Cropley V, Whittle S. Associations Between Neighborhood Disadvantage, Resting-State Functional Connectivity, and Behavior in the Adolescent Brain Cognitive Development Study: The Moderating Role of Positive Family and School Environments. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021; 6(9):877–86. https://doi.org/10.1016/j.bpsc.2021.03.008 PMID:33771727
65. Organization WH. Adolescent Health 2023 [https://www.who.int/health-topics/adolescent-health#tab=tab_1.
66. Tereshchenko S, Kasparov E. Neurobiological Risk Factors for the Development of Internet Addiction in Adolescents. Behav Sci (Basel). 2019; 9(6). https://doi.org/10.3390/bs9060062 PMID: 31207886
67. Han DH, Renshaw PF. Bupropion in the treatment of problematic online game play in patients with major depressive disorder. J Psychopharmacol. 2012; 26(5):689–96. https://doi.org/10.1177/ 0269881111400647 PMID: 21447539
• Dr. Marcelo Meirelles
– Médico Pediatra
– Médico Hebiatra (Especialista em Medicina do Adolescente)
– Psiquiatria na Infância e Adolescência